WJEC Unit 2 (Unit 2) 2022 June

Question 1
View details
1 In this question, \(\mathbf { i }\) and \(\mathbf { j }\) represent unit vectors due east and due north respectively. Sarah is going for a walk. She leaves her house and walks directly to the shop. She then walks directly from the shop to the park. Relative to her house:
  • the shop has position vector \(\left( - \frac { 2 } { 3 } \mathbf { j } \right) \mathrm { km }\),
  • the park is 2 km away on a bearing of \(060 ^ { \circ }\).
    a) Show that the position vector of the park relative to the house is \(( \sqrt { 3 } \mathbf { i } + \mathbf { j } ) \mathrm { km }\).
    b) Determine the total distance walked by Sarah from her house to the park.
    c) By considering a modelling assumption you have made, explain why the answer you found in part (b) may not be the actual distance that Sarah walked.
\(\mathbf { 1 }\)\(\mathbf { 1 }\)
A particle \(P\) moves along the \(x\)-axis so that its velocity \(v \mathrm {~ms} ^ { - 1 }\) at time \(t\) seconds \(( t \geqslant 0 )\) is given by $$v = 3 t ^ { 2 } - 24 t + 36$$ a) Find the values of \(t\) when \(P\) is instantaneously at rest.
b) Calculate the total distance travelled by the particle \(P\) whilst its velocity is decreasing.