OCR MEI Further Extra Pure Specimen — Question 4

Exam BoardOCR MEI
ModuleFurther Extra Pure (Further Extra Pure)
SessionSpecimen
TopicVector Product and Surfaces

4 A surface \(S\) has equation \(\mathrm { g } ( x , y , z ) = 0\), where \(\mathrm { g } ( x , y , z ) = ( y - 2 x ) ( y + z ) ^ { 2 } - 18\).
  1. Show that \(\frac { \partial \mathrm { g } } { \partial y } = ( y + z ) ( - 4 x + 3 y + z )\).
  2. Show that \(\frac { \partial \mathrm { g } } { \partial x } + 2 \frac { \partial \mathrm {~g} } { \partial y } - 2 \frac { \partial \mathrm {~g} } { \partial \mathrm { z } } = 0\).
  3. Hence identify a vector which lies in the tangent plane of every point on \(S\), explaining your reasoning.
  4. Find the cartesian equation of the tangent plane to the surface \(S\) at the point \(\mathrm { P } ( 1,4 , - 7 )\). The tangent plane to the surface \(S\) at the point \(\mathrm { Q } ( 0,2,1 )\) has equation \(6 x - 7 y - 4 z = - 18\).
  5. Find a vector equation for the line of intersection of the tangent planes at P and Q .