OCR MEI Further Extra Pure Specimen — Question 2

Exam BoardOCR MEI
ModuleFurther Extra Pure (Further Extra Pure)
SessionSpecimen
TopicSequences and series, recurrence and convergence

2 A binary operation * is defined on the set \(S = \{ p , q , r , s , t \}\) by the following composition table.
\(*\)\(p\)\(q\)\(r\)\(s\)\(t\)
\(p\)\(p\)\(q\)\(r\)\(s\)\(t\)
\(q\)\(q\)\(p\)\(s\)\(t\)\(r\)
\(r\)\(r\)\(t\)\(p\)\(q\)\(s\)
\(s\)\(s\)\(r\)\(t\)\(p\)\(q\)
\(t\)\(t\)\(s\)\(q\)\(r\)\(p\)
Determine whether ( \(S , *\) ) is a group.
  1. Find the general solution of $$u _ { n } = 8 u _ { n - 1 } - 16 u _ { n - 2 } , n \geq 2 .$$ A new sequence \(v _ { n }\) is defined by \(v _ { n } = \frac { u _ { n } } { u _ { n - 1 } }\) for \(n \geq 1\).
  2. (A) Use \(( * )\) to show that \(v _ { n } = 8 - \frac { 16 } { v _ { n - 1 } }\). for \(n \geq 2\).
    (B) Deduce that if \(v _ { n }\) tends to a limit then it must be 4 .
  3. Use your general solution in part (i) to show that \(\lim _ { n \rightarrow \infty } v _ { n } = 4\).
  4. Deduce the value of \(\lim _ { n \rightarrow \infty } \left( \frac { u _ { n } } { u _ { n - 2 } } \right)\).