2 A sequence is defined by the recurrence relation \(4 \mathrm { t } _ { \mathrm { n } + 1 } - \mathrm { t } _ { \mathrm { n } } = 15 \mathrm { n } + 17\) for \(\mathrm { n } \geqslant 1\), with \(t _ { 1 } = 2\).
- Solve the recurrence relation to find the particular solution for \(\mathrm { t } _ { \mathrm { n } }\).
Another sequence is defined by the recurrence relation \(( n + 1 ) u _ { n + 1 } - u _ { n } ^ { 2 } = 2 n - \frac { 1 } { n ^ { 2 } }\) for \(n \geqslant 1\), with \(u _ { 1 } = 2\).
- Explain why the recurrence relation for \(\mathrm { u } _ { \mathrm { n } }\) cannot be solved using standard techniques for non-homogeneous first order recurrence relations.
- Verify that the particular solution to this recurrence relation is given by \(u _ { n } = a n + \frac { b } { n }\) where \(a\) and \(b\) are constants whose values are to be determined.
A third sequence is defined by \(\mathrm { v } _ { \mathrm { n } } = \frac { \mathrm { t } _ { \mathrm { n } } } { \mathrm { u } _ { \mathrm { n } } }\) for \(n \geqslant 1\).
- Determine \(\lim _ { n \rightarrow \infty } \mathrm { v } _ { \mathrm { n } }\).