OCR MEI Further Extra Pure 2022 June — Question 3

Exam BoardOCR MEI
ModuleFurther Extra Pure (Further Extra Pure)
Year2022
SessionJune
TopicSequences and Series

3 A sequence is defined by the recurrence relation \(5 t _ { n + 1 } - 4 t _ { n } = 3 n ^ { 2 } + 28 n + 6\), for \(n \geqslant 0\), with \(t _ { 0 } = 7\).
  1. Find an expression for \(t _ { n }\) in terms of \(n\). Another sequence is defined by \(\mathrm { v } _ { \mathrm { n } } = \frac { \mathrm { t } _ { \mathrm { n } } } { \mathrm { n } ^ { \mathrm { m } } }\), for \(n \geqslant 1\), where \(m\) is a constant.
  2. In each of the following cases determine \(\lim _ { n \rightarrow \infty } \mathrm {~V} _ { n }\), if it exists, or show that the sequence is divergent.
    1. \(m = 3\)
    2. \(m = 2\)
    3. \(m = 1\)