OCR MEI Further Statistics Major 2020 November — Question 11

Exam BoardOCR MEI
ModuleFurther Statistics Major (Further Statistics Major)
Year2020
SessionNovember
TopicContinuous Probability Distributions and Random Variables
TypeCalculate probability P(X in interval)

11 The length of time in minutes for which a particular geyser erupts is modelled by the continuous random variable \(T\) with cumulative distribution function given by
\(\mathrm { F } ( t ) = \begin{cases} 0 & t \leqslant 2 ,
k \left( 8 t ^ { 2 } - t ^ { 3 } - 24 \right) & 2 < t < 4 ,
1 & t \geqslant 4 , \end{cases}\)
where \(k\) is a positive constant.
  1. Show that \(k = \frac { 1 } { 40 }\).
  2. Find the probability that a randomly selected eruption time lies between 2.5 and 3.5 minutes.
  3. Show that the median \(m\) of the distribution satisfies the equation \(m ^ { 3 } - 8 m ^ { 2 } + 44 = 0\).
  4. Verify that the median eruption time is 2.95 minutes, correct to 2 decimal places. The mean and standard deviation of \(T\) are denoted by \(\mu\) and \(\sigma\) respectively.
  5. Find \(\mathrm { P } ( \mu - \sigma < T < \mu + \sigma )\).
  6. Sketch the graph of the probability density function of \(T\).
  7. A Normally distributed random variable \(X\) has the same mean and standard deviation as \(T\). By considering the shape of the Normal distribution, and without doing any calculations, explain whether \(\mathrm { P } ( \mu - \sigma < X < \mu + \sigma )\) will be greater than, equal to or less than the probability that you calculated in part (e).