OCR MEI Further Statistics Major 2020 November — Question 9

Exam BoardOCR MEI
ModuleFurther Statistics Major (Further Statistics Major)
Year2020
SessionNovember
TopicChi-squared distribution

9 A supermarket sells trays of peaches. Each tray contains 10 peaches. Often some of the peaches in a tray are rotten. The numbers of rotten peaches in a random sample of 150 trays are shown in Table 9.1. \begin{table}[h]
Number of rotten peaches0123456\(\geqslant 7\)
Frequency393933198840
\captionsetup{labelformat=empty} \caption{Table 9.1}
\end{table} A manager at the supermarket thinks that the number of rotten peaches in a tray may be modelled by a binomial distribution.
  1. Use these data to estimate the value of the parameter \(p\) for the binomial model \(\mathrm { B } ( 10 , p )\). The manager decides to carry out a goodness of fit test to investigate further. The screenshot in Fig. 9.2 shows part of a spreadsheet to assess the goodness of fit of the distribution \(\mathrm { B } ( 10 , p )\), using the value of \(p\) estimated from the data. \begin{table}[h]
    -ABCDE
    1Number of rotten peachesObserved frequencyBinomial probabilityExpected frequencyChi-squared contribution
    2039
    31391.4229
    42330.294144.11672.8012
    53190.162924.43831.2102
    6\(\geqslant 4\)200.076911.53116.2199
    7
    \captionsetup{labelformat=empty} \caption{Fig. 9.2}
    \end{table}
  2. Calculate the missing values in each of the following cells.
    • C2
    • D2
    • E2
    • Explain why the numbers for 4, 5, 6 and at least 7 rotten peaches have been combined into the single category of at least 4 rotten peaches, as shown in the spreadsheet.
    • Carry out the test at the \(1 \%\) significance level.
    • Using the values of the contributions, comment on the results of the test.