OCR MEI Further Statistics Major 2023 June — Question 10

Exam BoardOCR MEI
ModuleFurther Statistics Major (Further Statistics Major)
Year2023
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeFind parameter from median

10 The continuous random variable \(X\) has probability density function given by
\(f ( x ) = \begin{cases} \frac { 4 } { 15 } \left( \frac { a } { x ^ { 2 } } + 3 x ^ { 2 } - \frac { 7 } { 2 } \right) & 1 \leqslant x \leqslant 2 ,
0 & \text { otherwise, } \end{cases}\)
where \(a\) is a positive constant.
  1. Find the cumulative distribution function of \(X\) in terms of \(a\).
  2. Hence or otherwise determine the value of \(a\).
  3. Show that the median value \(m\) of \(X\) satisfies the equation $$8 m ^ { 4 } - 28 m ^ { 2 } + 9 m - 4 = 0 .$$
  4. Verify that the median value of \(X\) is 1.74, correct to \(\mathbf { 2 }\) decimal places.
  5. Find \(\mathrm { E } ( X )\).
  6. Determine the mode of \(X\).