OCR MEI Further Statistics Major 2023 June — Question 8

Exam BoardOCR MEI
ModuleFurther Statistics Major (Further Statistics Major)
Year2023
SessionJune
TopicContinuous Uniform Random Variables
TypeMultiple observations or trials

8 The random variable \(X\) has a continuous uniform distribution over [0,10].
  1. Find the probability that, if two independent values of \(X\) are taken, one is less than 3 and the other is greater than 3 . The random variable \(T\) denotes the sum of 5 independent values of \(X\).
  2. State the value of \(\mathrm { P } ( T \leqslant 25 )\). The spreadsheet below shows the heading row and the first 20 data rows from a total of 100 data rows of a simulation of the distribution of \(X\). Each of the 100 rows shows a simulation of 5 independent values of \(X\), together with \(T\), the sum of the 5 values. All of the values have been rounded to 2 decimal places. In column I the spreadsheet shows the number of values of \(T\) that are less than or equal to the corresponding values in column H . For example, there are 75 simulated values of \(T\) that are less than or equal to 30 .
    ABcDEFGHI
    1\(\mathrm { X } _ { 1 }\)\(\mathrm { X } _ { 2 }\)\(\mathrm { X } _ { 3 }\)\(\mathrm { X } _ { 4 }\)\(\mathrm { X } _ { 5 }\)TtNumber \(\leqslant \mathrm { t }\)
    23.736.654.930.419.3325.0600
    34.956.584.482.517.2625.7950
    48.104.874.263.830.7921.85101
    56.704.105.101.826.7624.48154
    63.738.388.499.871.3131.792023
    73.224.360.121.349.4918.532548
    89.177.135.474.352.4428.553075
    93.421.936.042.998.8523.243593
    100.980.689.829.837.2828.584099
    115.861.677.774.087.1426.5245100
    129.200.315.825.316.4527.1050100
    137.044.302.060.064.1617.62
    140.315.021.485.371.7713.94
    153.776.041.217.675.0123.69
    161.215.541.901.436.9117.00
    179.271.985.809.379.3435.76
    184.305.662.801.561.1915.51
    197.153.196.895.412.1824.82
    206.186.323.016.499.1231.13
    215.035.995.196.973.5526.73
  3. Use the spreadsheet output to estimate each of the following.
    • \(\mathrm { P } ( T \leqslant 25 )\)
    • \(\mathrm { P } ( T > 35 )\)
    • In this question you must show detailed reasoning.
    The random variable \(Y\) is the mean of 100 independent values of \(T\). Determine an estimate of \(\mathrm { P } ( Y > 26 )\).