6 Stones A and B have masses \(m \mathrm {~kg}\) and \(3 m \mathrm {~kg}\) respectively. They lie at rest on a large area of smooth horizontal ice and may move freely over the ice. Stone A is given a horizontal impulse of magnitude \(m u \mathrm {~N} s\) towards B so that the stones collide directly. After the collision the direction of motion of A is reversed. The coefficient of restitution between A and B is denoted by \(e\).
- Find the range of possible values of \(e\).
After the collision, B subsequently collides with a vertical smooth wall perpendicular to its path and rebounds. The coefficient of restitution between \(B\) and the wall is the same as the coefficient of restitution between A and B .
- Show that A and B will collide again unless the collision between B and the wall is perfectly elastic.
- Explain why modelling the collision between B and the wall as perfectly elastic is possibly unrealistic.
- Given that the kinetic energy lost in the first collision between A and B is \(\frac { 5 } { 24 } m u ^ { 2 }\), determine the value of \(e\).
- Given that B was 2 metres from the wall when the stones first collided, determine the distance of the stones from the wall when they next collide.