9 The transformation Too the plane has associated matrix \(\mathbf { M }\), where \(\mathbf { M } = \left( \begin{array} { l l } - 1 & 0
- 2 & 1 \end{array} \right)\).
- On the grid in the Printed Answer Booklet, plot the image \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\) of the unit square OABC under the transformation T.
- Calculate the value of \(\operatorname { det } \mathbf { M }\).
- Explain the significance of the value of \(\operatorname { det } \mathbf { M }\) in relation to the image \(\mathrm { OA } ^ { \prime } \mathrm { B } ^ { \prime } \mathrm { C } ^ { \prime }\).
- T is equivalent to a sequence of two transformations of the plane.
- Specify fully two transformations equivalent to T .
- Use matrices to verify your answer.