OCR MEI Further Statistics A AS 2022 June — Question 6

Exam BoardOCR MEI
ModuleFurther Statistics A AS (Further Statistics A AS)
Year2022
SessionJune
TopicGeometric Distribution
TypeNon-geometric distribution identification

6 Tom has read in a newspaper that you can tell the air temperature by counting how often a cricket chirps in a period of 20 seconds. (A cricket is a type of insect.) He wants to know exactly how the temperature can be predicted. On 8 randomly selected days, when Tom can hear crickets chirping, he records the number of chirps, \(x\), made by a cricket in a 20-second interval, and also the temperature, \(y ^ { \circ } \mathrm { C }\), at that time. The data are summarised as follows.
\(n = 8 \quad \sum x = 268 \quad \sum y = 141.9 \quad \sum x ^ { 2 } = 9618 \quad \sum y ^ { 2 } = 2630.55 \quad \sum \mathrm { xy } = 5009.1\)
These data are illustrated below.
\includegraphics[max width=\textwidth, alt={}, center]{8f1e0c68-a334-4657-823e-386ab0994c02-5_661_1035_699_242}
  1. Determine the equation of the regression line of \(y\) on \(x\). Give your answer in the form \(\mathrm { y } = \mathrm { ax } + \mathrm { b }\), giving the values of \(a\) and \(b\) correct to \(\mathbf { 3 }\) significant figures.
  2. Use the equation of the regression line to predict the temperature for the following values of \(x\).
    • 35
    • 10
    • Comment on the reliability of your predictions in part (b).
    • State the coordinates of the point of intersection of the line whose equation you have calculated with the regression line of \(x\) on \(y\).