| \(r\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( X = r )\) | \(7 k\) | \(3 k\) |
| 1 | A | B | C | D | E | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\multirow{2}{*}{
Question 6View details
6 Tom has read in a newspaper that you can tell the air temperature by counting how often a cricket chirps in a period of 20 seconds. (A cricket is a type of insect.) He wants to know exactly how the temperature can be predicted. On 8 randomly selected days, when Tom can hear crickets chirping, he records the number of chirps, \(x\), made by a cricket in a 20-second interval, and also the temperature, \(y ^ { \circ } \mathrm { C }\), at that time. The data are summarised as follows.
\(n = 8 \quad \sum x = 268 \quad \sum y = 141.9 \quad \sum x ^ { 2 } = 9618 \quad \sum y ^ { 2 } = 2630.55 \quad \sum \mathrm { xy } = 5009.1\) These data are illustrated below. \includegraphics[max width=\textwidth, alt={}, center]{8f1e0c68-a334-4657-823e-386ab0994c02-5_661_1035_699_242}
Question 7View details
7 On average one in five packets of a breakfast cereal contains a voucher for a discount on the next packet bought. Whether or not a packet contains a voucher is independent of other packets, and can only be determined by opening the packet.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||