OCR MEI Further Mechanics B AS 2019 June — Question 6

Exam BoardOCR MEI
ModuleFurther Mechanics B AS (Further Mechanics B AS)
Year2019
SessionJune
TopicCircular Motion 2

6 A smooth solid hemisphere of radius \(a\) is fixed with its plane face in contact with a horizontal surface.
The highest point on the hemisphere is H , and the centre of its base is O . A particle of mass \(m\) is held at a point S on the surface of the hemisphere such that angle HOS is \(30 ^ { \circ }\), as shown in Fig. 6. The particle is projected from S with speed \(0.8 \sqrt { a g }\) along the surface of the hemisphere towards H . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4acb019b-e630-4766-9d7f-39bc0e174ba1-5_358_1056_497_244} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Show that the particle passes through H without leaving the surface of the hemisphere. After passing through H , the particle passes through a point Q on the surface of the hemisphere, where angle \(\mathrm { HOQ } = \theta ^ { \circ }\).
  2. State, in terms of \(g\) and \(\theta\), the tangential component of the acceleration of the particle when it is at Q . The particle loses contact with the hemisphere at Q and subsequently lands on the horizontal surface at a point L .
  3. Find the value of \(\cos \theta\) correct to 3 significant figures.
  4. Show that \(\mathrm { OL } = k a\), where \(k\) is to be found correct to 3 significant figures.