9 The complex numbers \(z\) and \(\omega\) are defined by \(z = 1 - i\) and \(\omega = - 3 + 3 \sqrt { 3 } i\).
- Express \(z \omega\) in the form \(\mathrm { a } + \mathrm { bi }\), where \(a\) and \(b\) are real and in exact surd form.
- Express \(z\) and \(\omega\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Give the exact values of \(r\) and \(\theta\) in each case.
- On an Argand diagram, the points representing \(\omega\) and \(z \omega\) are \(A\) and \(B\) respectively.
Prove that \(O A B\) is an isosceles right-angled triangle, where \(O\) is the origin.
- Using your answers to part (b), prove that \(\tan \frac { 5 } { 12 } \pi = \frac { \sqrt { 3 } + 1 } { \sqrt { 3 } - 1 }\).