CAIE P3 2024 June — Question 9

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2024
SessionJune
TopicComplex numbers 2

9 The complex numbers \(z\) and \(\omega\) are defined by \(z = 1 - i\) and \(\omega = - 3 + 3 \sqrt { 3 } i\).
  1. Express \(z \omega\) in the form \(\mathrm { a } + \mathrm { bi }\), where \(a\) and \(b\) are real and in exact surd form.
  2. Express \(z\) and \(\omega\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Give the exact values of \(r\) and \(\theta\) in each case.
  3. On an Argand diagram, the points representing \(\omega\) and \(z \omega\) are \(A\) and \(B\) respectively. Prove that \(O A B\) is an isosceles right-angled triangle, where \(O\) is the origin.
  4. Using your answers to part (b), prove that \(\tan \frac { 5 } { 12 } \pi = \frac { \sqrt { 3 } + 1 } { \sqrt { 3 } - 1 }\).