OCR MEI Further Mechanics A AS 2018 June — Question 3

Exam BoardOCR MEI
ModuleFurther Mechanics A AS (Further Mechanics A AS)
Year2018
SessionJune
TopicDimensional Analysis

3 Jodie is doing an experiment involving a simple pendulum. The pendulum consists of a small object tied to one end of a piece of string. The other end of the string is attached to a fixed point O and the object is allowed to swing between two fixed points A and B and back again, as shown in Fig. 3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fa99d9e6-e174-42dd-ac92-7b7d112c08be-3_328_350_584_886} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Jodie thinks that \(P\), the time the pendulum takes to swing from A to B and back again, depends on the mass, \(m\), of the small object, the length, \(l\), of the piece of string, and the acceleration due to gravity \(g\). She proposes the formula \(P = k m ^ { \alpha } l ^ { \beta } g ^ { \gamma }\).
  1. What is the significance of \(k\) in Jodie's formula?
  2. Use dimensional analysis to determine the values of \(\alpha , \beta\) and \(\gamma\). Jodie finds that when the mass of the object is 1.5 kg and the length of the string is 80 cm the time taken for the pendulum to swing from A to B and back again is 1.8 seconds.
  3. Use Jodie's formula and your answers to part (ii) to find each of the following.
    (A) The value of \(k\)
    (B) The time taken for the pendulum to swing from A to B and back again when the mass of the object is 0.9 kg and the length of the string is 1.4 m
  4. Comment on the assumption made by Jodie that the formula for the time taken for the pendulum to swing from A to B and back again is dependent on \(m , l\) and \(g\).