CAIE P3 (Pure Mathematics 3) 2023 June

Question 1
View details
1 Solve the equation \(\ln ( x + 5 ) = 5 + \ln x\). Give your answer correct to 3 decimal places.
Question 2
View details
2 Find the quotient and remainder when \(2 x ^ { 4 } - 27\) is divided by \(x ^ { 2 } + x + 3\).
Question 3
View details
3 On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z\) satisfying the inequalities \(| z - 3 - \mathrm { i } | \leqslant 3\) and \(| z | \geqslant | z - 4 \mathrm { i } |\).
Question 4
View details
4 The parametric equations of a curve are $$x = \frac { \cos \theta } { 2 - \sin \theta } , \quad y = \theta + 2 \cos \theta$$ Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 2 - \sin \theta ) ^ { 2 }\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{72042f09-3495-42e9-bee9-96ec5ac0bf0c-06_352_643_274_744} The diagram shows the part of the curve \(y = x ^ { 2 } \cos 3 x\) for \(0 \leqslant x \leqslant \frac { 1 } { 6 } \pi\), and its maximum point \(M\), where \(x = a\).
  1. Show that \(a\) satisfies the equation \(a = \frac { 1 } { 3 } \tan ^ { - 1 } \left( \frac { 2 } { 3 a } \right)\).
  2. Use an iterative formula based on the equation in (a) to determine \(a\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 6
View details
6
  1. Express \(3 \cos x + 2 \cos \left( x - 60 ^ { \circ } \right)\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). State the exact value of \(R\) and give \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$3 \cos 2 \theta + 2 \cos \left( 2 \theta - 60 ^ { \circ } \right) = 2.5$$ for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
Question 7
View details
7
  1. Use the substitution \(u = \cos x\) to show that $$\int _ { 0 } ^ { \pi } \sin 2 x \mathrm { e } ^ { 2 \cos x } \mathrm {~d} x = \int _ { - 1 } ^ { 1 } 2 u \mathrm { e } ^ { 2 u } \mathrm {~d} u$$
  2. Hence find the exact value of \(\int _ { 0 } ^ { \pi } \sin 2 x \mathrm { e } ^ { 2 \cos x } \mathrm {~d} x\).
Question 8
View details
8 The variables \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y ^ { 2 } + 4 } { x ( y + 4 ) }$$ for \(x > 0\). It is given that \(x = 4\) when \(y = 2 \sqrt { 3 }\).
Solve the differential equation to obtain the value of \(x\) when \(y = 2\).
Question 9 4 marks
View details
9 The lines \(l\) and \(m\) have equations $$\begin{aligned} l : & \mathbf { r } = a \mathbf { i } + 3 \mathbf { j } + b \mathbf { k } + \lambda ( c \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k } )
m : & \mathbf { r } = \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } + \mu ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } ) \end{aligned}$$ Relative to the origin \(O\), the position vector of the point \(P\) is \(4 \mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k }\).
  1. Given that \(l\) is perpendicular to \(m\) and that \(P\) lies on \(l\), find the values of the constants \(a , b\) and \(c\). [4]
  2. The perpendicular from \(P\) meets line \(m\) at \(Q\). The point \(R\) lies on \(P Q\) extended, with \(P Q : Q R = 2 : 3\). Find the position vector of \(R\).
Question 10
View details
10 Let \(\mathrm { f } ( x ) = \frac { 21 - 8 x - 2 x ^ { 2 } } { ( 1 + 2 x ) ( 3 - x ) ^ { 2 } }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence obtain the expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
Question 11
View details
11 The complex number \(z\) is defined by \(z = \frac { 5 a - 2 \mathrm { i } } { 3 + a \mathrm { i } }\), where \(a\) is an integer. It is given that \(\arg z = - \frac { 1 } { 4 } \pi\).
  1. Find the value of \(a\) and hence express \(z\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. Express \(z ^ { 3 }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Give the simplified exact values of \(r\) and \(\theta\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.