AQA FP1 2010 June — Question 2

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
TopicComplex Numbers Arithmetic
TypeLinear equations in z and z*

2 It is given that \(z = x + \mathrm { i } y\), where \(x\) and \(y\) are real numbers.
  1. Find, in terms of \(x\) and \(y\), the real and imaginary parts of $$( 1 - 2 i ) z - z ^ { * }$$
  2. Hence find the complex number \(z\) such that $$( 1 - 2 \mathrm { i } ) z - z ^ { * } = 10 ( 2 + \mathrm { i } )$$
    PARTREFERENCE
    \(\_\_\_\_\)\(\_\_\_\_\)