AQA FP1 2009 June — Question 8

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionJune
TopicPartial Fractions
TypeCurve sketching with asymptotes

8 A curve has equation $$y = \frac { x ^ { 2 } } { ( x - 1 ) ( x - 5 ) }$$
  1. Write down the equations of the three asymptotes to the curve.
  2. Show that the curve has no point of intersection with the line \(y = - 1\).
    1. Show that, if the curve intersects the line \(y = k\), then the \(x\)-coordinates of the points of intersection must satisfy the equation $$( k - 1 ) x ^ { 2 } - 6 k x + 5 k = 0$$
    2. Show that, if this equation has equal roots, then $$k ( 4 k + 5 ) = 0$$
  3. Hence find the coordinates of the two stationary points on the curve.