AQA FP1 2007 January — Question 8

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2007
SessionJanuary
TopicConic sections

8 A curve \(C\) has equation $$\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 9 } = 1$$
  1. Find the \(y\)-coordinates of the points on \(C\) for which \(x = 10\), giving each answer in the form \(k \sqrt { 3 }\), where \(k\) is an integer.
  2. Sketch the curve \(C\), indicating the coordinates of any points where the curve intersects the coordinate axes.
  3. Write down the equation of the tangent to \(C\) at the point where \(C\) intersects the positive \(x\)-axis.
    1. Show that, if the line \(y = x - 4\) intersects \(C\), the \(x\)-coordinates of the points of intersection must satisfy the equation $$16 x ^ { 2 } - 200 x + 625 = 0$$
    2. Solve this equation and hence state the relationship between the line \(y = x - 4\) and the curve \(C\).