- Three forces \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 3 }\) act on a rigid body at the points with position vectors \(\mathbf { r } _ { 1 } , \mathbf { r } _ { 2 }\) and \(\mathbf { r } _ { 3 }\) respectively, where
\(\mathbf { F } _ { 1 } = ( 2 \mathbf { j } - \mathbf { k } ) \mathrm { N }\)
\(\mathbf { F } _ { 3 } = ( \mathbf { i } + \mathbf { j } ) \mathrm { N }\)
\(\mathbf { r } _ { 1 } = ( 4 \mathbf { j } - \mathbf { k } ) \mathrm { m }\)
\(\mathbf { r } _ { 3 } = ( 3 \mathbf { i } + \mathbf { j } + \mathbf { k } ) \mathrm { m }\)
\(\mathbf { F } _ { 1 } = ( 2 \mathbf { j } - \mathbf { k } ) \mathrm { N }\)
\(\mathbf { r } _ { 1 } = ( 4 \mathbf { j } - \mathbf { k } ) \mathrm { m }\)
$$\begin{aligned}
& \mathbf { F } _ { 2 } = ( \mathbf { i } + \mathbf { k } ) \mathrm { N }
& \mathbf { r } _ { 2 } = ( 2 \mathbf { i } + \mathbf { k } ) \mathrm { m }
\end{aligned}$$
j
The system of the three forces is equivalent to a single force \(\mathbf { R }\) acting through the point with position vector \(( \mathbf { i } - \mathbf { j } + \mathbf { k } ) \mathrm { m }\), together with a couple of moment \(\mathbf { G }\).
- Find \(\mathbf { R }\).
- Find \(\mathbf { G }\). respectively, where
The