- \hspace{0pt} [In this question, \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane.]
A bead \(P\) of mass 0.4 kg is threaded on a smooth straight horizontal wire. The wire lies along the line with vector equation \(\mathbf { r } = ( \mathbf { i } + 2 \mathbf { j } ) + \lambda ( - 2 \mathbf { i } + 3 \mathbf { j } )\). The bead is initially at rest at the point \(A\) with position vector \(( - \mathbf { i } + 5 \mathbf { j } ) \mathrm { m }\). A constant horizontal force \(( 0.5 \mathbf { i } + \mathbf { j } ) \mathrm { N }\) acts on \(P\) and moves it along the wire to the point \(B\). At \(B\) the speed of \(P\) is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Find the position vector of \(B\).