| Exam Board | Edexcel |
| Module | M5 (Mechanics 5) |
| Year | 2005 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
2. At time \(t\) seconds the position vector of a particle \(P\), relative to a fixed origin \(O\), is \(\mathbf { r }\) metres, where \(\mathbf { r }\) satisfies the differential equation
$$\frac { \mathrm { d } \mathbf { r } } { \mathrm {~d} t } + 2 \mathbf { r } = 3 \mathrm { e } ^ { - t } \mathbf { j }$$
Given that \(\mathbf { r } = 2 \mathbf { i } - \mathbf { j }\) when \(t = 0\), find \(\mathbf { r }\) in terms of \(t\).
(Total 7 marks)