1 A sports car of mass 1.2 tonnes is being tested on a horizontal, straight section of road. After \(t \mathrm {~s}\), the car has travelled \(x \mathrm {~m}\) from the starting line and its velocity is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The engine produces a driving force of 4000 N and the total resistance to the motion of the car is given by \(\frac { 40 } { 49 } v ^ { 2 } \mathrm {~N}\). The car crosses the starting line with speed \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Write down an equation of motion for the car and solve it to show that \(v ^ { 2 } = 4900 - 4800 \mathrm { e } ^ { - \frac { 1 } { 735 } x }\).
- Hence find the work done against the resistance to motion over the first 100 m beyond the starting line.