CAIE P3 2022 June — Question 9

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2022
SessionJune
TopicVectors: Lines & Planes

9 The lines \(l\) and \(m\) have vector equations $$\mathbf { r } = - \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } + \lambda ( 2 \mathbf { i } - \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 5 \mathbf { i } + 4 \mathbf { j } + 3 \mathbf { k } + \mu ( a \mathbf { i } + b \mathbf { j } + \mathbf { k } )$$ respectively, where \(a\) and \(b\) are constants.
  1. Given that \(l\) and \(m\) intersect, show that \(2 b - a = 4\).
  2. Given also that \(l\) and \(m\) are perpendicular, find the values of \(a\) and \(b\).
  3. When \(a\) and \(b\) have these values, find the position vector of the point of intersection of \(l\) and \(m\).