9 The lines \(l\) and \(m\) have vector equations
$$\mathbf { r } = - \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } + \lambda ( 2 \mathbf { i } - \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 5 \mathbf { i } + 4 \mathbf { j } + 3 \mathbf { k } + \mu ( a \mathbf { i } + b \mathbf { j } + \mathbf { k } )$$
respectively, where \(a\) and \(b\) are constants.
- Given that \(l\) and \(m\) intersect, show that \(2 b - a = 4\).
- Given also that \(l\) and \(m\) are perpendicular, find the values of \(a\) and \(b\).
- When \(a\) and \(b\) have these values, find the position vector of the point of intersection of \(l\) and \(m\).