1 A raindrop increases in mass as it falls vertically from rest through a stationary cloud. At time \(t \mathrm {~s}\) the velocity of the raindrop is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and its mass is \(m \mathrm {~kg}\). The rate at which the mass increases is modelled as \(\frac { m g } { 2 ( v + 1 ) } \mathrm { kg } \mathrm { s } ^ { - 1 }\). Resistances to motion are neglected.
- Write down the equation of motion of the raindrop. Hence show that
$$\left( 1 - \frac { 1 } { v + 2 } \right) \frac { \mathrm { d } v } { \mathrm {~d} t } = \frac { 1 } { 2 } g .$$
- Solve this differential equation to find an expression for \(t\) in terms of \(v\). Calculate the time it takes for the velocity of the raindrop to reach \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Describe, with reasons, what happens to the acceleration of the raindrop for large values of \(t\).