4 A particle of mass 2 kg starts from rest at a point O and moves in a horizontal line with velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) under the action of a force \(F \mathrm {~N}\), where \(F = 2 - 8 v ^ { 2 }\). The displacement of the particle from O at time \(t\) seconds is \(x \mathrm {~m}\).
- Formulate and solve a differential equation to show that \(v ^ { 2 } = \frac { 1 } { 4 } \left( 1 - \mathrm { e } ^ { - 8 x } \right)\).
- Hence express \(F\) in terms of \(x\) and find, by integration, the work done in the first 2 m of the motion.
- Formulate and solve a differential equation to show that \(v = \frac { 1 } { 2 } \left( \frac { 1 - \mathrm { e } ^ { - 4 t } } { 1 + \mathrm { e } ^ { - 4 t } } \right)\).
- Calculate \(v\) when \(t = 1\) and when \(t = 2\), giving your answers to four significant figures. Hence find the impulse of the force \(F\) over the interval \(1 \leqslant t \leqslant 2\).