OCR MEI M4 (Mechanics 4) 2007 June

Question 1
View details
1 A light elastic string has one end fixed to a vertical pole at A . The string passes round a smooth horizontal peg, P , at a distance \(a\) from the pole and has a smooth ring of mass \(m\) attached at its other end B . The ring is threaded onto the pole below A . The ring is at a distance \(y\) below the horizontal level of the peg. This situation is shown in Fig. 1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8aab7e54-a204-481b-8f09-4bf4ca4e115d-2_462_275_557_897} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} The string has stiffness \(k\) and natural length equal to the distance AP .
  1. Express the extension of the string in terms of \(y\) and \(a\). Hence find the potential energy of the system relative to the level of P .
  2. Use the potential energy to find the equilibrium position of the system, and show that it is stable.
  3. Calculate the normal reaction exerted by the pole on the ring in the equilibrium position.
Question 2
View details
2 A railway truck of mass \(m _ { 0 }\) travels along a horizontal track. There is no driving force and the resistances to motion are negligible. The truck is being filled with coal which falls vertically into it at a mass rate \(k\). The process starts as the truck passes a point O with speed \(u\). After time \(t\), the truck has velocity \(v\) and the displacement from O is \(x\).
  1. Show that \(v = \frac { m _ { 0 } u } { m _ { 0 } + k t }\) and find \(x\) in terms of \(m _ { 0 } , u , k\) and \(t\).
  2. Find the distance that the truck has travelled when its speed has been halved.
Question 3
View details
3
  1. Show, by integration, that the moment of inertia of a uniform rod of mass \(m\) and length \(2 a\) about an axis through its centre and perpendicular to the rod is \(\frac { 1 } { 3 } m a ^ { 2 }\). A pendulum of length 1 m is made by attaching a uniform sphere of mass 2 kg and radius 0.1 m to the end of a uniform rod AB of mass 1.2 kg and length 0.8 m , as shown in Fig. 3. The centre of the sphere is collinear with A and B . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8aab7e54-a204-481b-8f09-4bf4ca4e115d-3_442_291_717_886} \captionsetup{labelformat=empty} \caption{Fig. 3}
    \end{figure}
  2. Find the moment of inertia of the pendulum about an axis through A perpendicular to the rod. The pendulum can swing freely in a vertical plane about a fixed horizontal axis through A .
  3. The pendulum is held with AB at an angle \(\alpha\) to the downward vertical and released from rest. At time \(t , \mathrm { AB }\) is at an angle \(\theta\) to the vertical. Find an expression for \(\dot { \theta } ^ { 2 }\) in terms of \(\theta\) and \(\alpha\).
  4. Hence, or otherwise, show that, provided that \(\alpha\) is small, the pendulum performs simple harmonic motion. Calculate the period.
Question 4
View details
4 A particle of mass 2 kg starts from rest at a point O and moves in a horizontal line with velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) under the action of a force \(F \mathrm {~N}\), where \(F = 2 - 8 v ^ { 2 }\). The displacement of the particle from O at time \(t\) seconds is \(x \mathrm {~m}\).
  1. Formulate and solve a differential equation to show that \(v ^ { 2 } = \frac { 1 } { 4 } \left( 1 - \mathrm { e } ^ { - 8 x } \right)\).
  2. Hence express \(F\) in terms of \(x\) and find, by integration, the work done in the first 2 m of the motion.
  3. Formulate and solve a differential equation to show that \(v = \frac { 1 } { 2 } \left( \frac { 1 - \mathrm { e } ^ { - 4 t } } { 1 + \mathrm { e } ^ { - 4 t } } \right)\).
  4. Calculate \(v\) when \(t = 1\) and when \(t = 2\), giving your answers to four significant figures. Hence find the impulse of the force \(F\) over the interval \(1 \leqslant t \leqslant 2\).