OCR MEI M4 2006 June — Question 3

Exam BoardOCR MEI
ModuleM4 (Mechanics 4)
Year2006
SessionJune
TopicVariable Force

3 An aeroplane is taking off from a runway. It starts from rest. The resultant force in the direction of motion has power, \(P\) watts, modelled by $$P = 0.0004 m \left( 10000 v + v ^ { 3 } \right) ,$$ where \(m \mathrm {~kg}\) is the mass of the aeroplane and \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the velocity at time \(t\) seconds. The displacement of the aeroplane from its starting point is \(x \mathrm {~m}\). To take off successfully the aeroplane must reach a speed of \(80 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) before it has travelled 900 m .
  1. Formulate and solve a differential equation for \(v\) in terms of \(x\). Hence show that the aeroplane takes off successfully.
  2. Formulate a differential equation for \(v\) in terms of \(t\). Solve the differential equation to show that \(v = 100 \tan ( 0.04 t )\). What feature of this result casts doubt on the validity of the model?
  3. In fact the model is only valid for \(0 \leqslant t \leqslant 11\), after which the power remains constant at the value attained at \(t = 11\). Will the aeroplane take off successfully?