2 A uniform solid circular cone has mass \(M\) and base radius \(R\).
- Show by integration that the moment of inertia of the cone about its axis of symmetry is \(\frac { 3 } { 10 } M R ^ { 2 }\). (You may assume the standard formula \(\frac { 1 } { 2 } m r ^ { 2 }\) for the moment of inertia of a uniform disc about its axis and that the volume of a cone is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).)
The axis of symmetry of the cone is fixed vertically and the cone is rotating about its axis at an angular speed of \(6 \mathrm { rad } \mathrm { s } ^ { - 1 }\). A frictional couple of constant moment 0.027 Nm is applied to the cone bringing it to rest. Given that the mass of the cone is 2 kg and its base radius is 0.3 m , find
- the constant angular deceleration of the cone,
- the time taken for the cone to come to rest from the instant that the couple is applied.