6. A light elastic spring \(A B\) has natural length \(2 a\) and modulus of elasticity \(2 m n ^ { 2 } a\), where \(n\) is a constant. A particle \(P\) of mass \(m\) is attached to the end \(A\) of the spring. At time \(t = 0\), the spring, with \(P\) attached, lies at rest and unstretched on a smooth horizontal plane. The other end \(B\) of the spring is then pulled along the plane in the direction \(A B\) with constant acceleration \(f\). At time \(t\) the extension of the spring is \(x\).
- Show that
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + n ^ { 2 } x = f .$$
- Find \(x\) in terms of \(n , f\) and \(t\).
Hence find
- the maximum extension of the spring,
- the speed of \(P\) when the spring first reaches its maximum extension.
\section*{June 2009}