5. Two small smooth spheres \(A\) and \(B\), of mass 2 kg and 1 kg respectively, are moving on a smooth horizontal plane when they collide. Immediately before the collision the velocity of \(A\) is \(( \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) and the velocity of \(B\) is \(- 2 \mathbf { i } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Immediately after the collision the velocity of \(A\) is \(\mathbf { j } \mathrm { m } \mathrm { s } ^ { - 1 }\).
- Show that the velocity of \(B\) immediately after the collision is \(2 \mathbf { j } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Find the impulse of \(B\) on \(A\) in the collision, giving your answer as a vector, and hence show that the line of centres is parallel to \(\mathbf { i } + \mathbf { j }\).
- Find the coefficient of restitution between \(A\) and \(B\).
\section*{June 2009}