9 The quadrilateral \(A B C D\) is a trapezium in which \(A B\) and \(D C\) are parallel. With respect to the origin \(O\), the position vectors of \(A , B\) and \(C\) are given by \(\overrightarrow { O A } = - \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } , \overrightarrow { O B } = \mathbf { i } + 3 \mathbf { j } + \mathbf { k }\) and \(\overrightarrow { O C } = 2 \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k }\).
- Given that \(\overrightarrow { D C } = 3 \overrightarrow { A B }\), find the position vector of \(D\).
- State a vector equation for the line through \(A\) and \(B\).
- Find the distance between the parallel sides and hence find the area of the trapezium.