CAIE P3 (Pure Mathematics 3) 2021 June

Question 1
View details
1 Expand \(( 1 + 3 x ) ^ { \frac { 2 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients.
Question 2
View details
2 Solve the equation \(4 ^ { x } = 3 + 4 ^ { - x }\). Give your answer correct to 3 decimal places.
Question 3
View details
3 The parametric equations of a curve are $$x = t + \ln ( t + 2 ) , \quad y = ( t - 1 ) \mathrm { e } ^ { - 2 t }$$ where \(t > - 2\).
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\), simplifying your answer.
  2. Find the exact \(y\)-coordinate of the stationary point of the curve.
Question 4
View details
4 Let \(f ( x ) = \frac { 15 - 6 x } { ( 1 + 2 x ) ( 4 - x ) }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence find \(\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x\), giving your answer in the form \(\ln \left( \frac { a } { b } \right)\), where \(a\) and \(b\) are integers.
Question 5
View details
5
  1. By first expanding \(\tan ( 2 \theta + 2 \theta )\), show that the equation \(\tan 4 \theta = \frac { 1 } { 2 } \tan \theta\) may be expressed as \(\tan ^ { 4 } \theta + 2 \tan ^ { 2 } \theta - 7 = 0\).
  2. Hence solve the equation \(\tan 4 \theta = \frac { 1 } { 2 } \tan \theta\), for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
Question 6
View details
6
  1. By sketching a suitable pair of graphs, show that the equation \(\cot \frac { 1 } { 2 } x = 1 + \mathrm { e } ^ { - x }\) has exactly one root in the interval \(0 < x \leqslant \pi\).
  2. Verify by calculation that this root lies between 1 and 1.5.
  3. Use the iterative formula \(x _ { n + 1 } = 2 \tan ^ { - 1 } \left( \frac { 1 } { 1 + \mathrm { e } ^ { - x _ { n } } } \right)\) to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{1990cbac-d96f-4484-be4b-67dab35b3147-10_647_519_260_813} For the curve shown in the diagram, the normal to the curve at the point \(P\) with coordinates \(( x , y )\) meets the \(x\)-axis at \(N\). The point \(M\) is the foot of the perpendicular from \(P\) to the \(x\)-axis. The curve is such that for all values of \(x\) in the interval \(0 \leqslant x < \frac { 1 } { 2 } \pi\), the area of triangle \(P M N\) is equal to \(\tan x\).
    1. Show that \(\frac { M N } { y } = \frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Hence show that \(x\) and \(y\) satisfy the differential equation \(\frac { 1 } { 2 } y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } = \tan x\).
  1. Given that \(y = 1\) when \(x = 0\), solve this differential equation to find the equation of the curve, expressing \(y\) in terms of \(x\).
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{1990cbac-d96f-4484-be4b-67dab35b3147-12_458_725_262_708} The diagram shows the curve \(y = \frac { \ln x } { x ^ { 4 } }\) and its maximum point \(M\).
  1. Find the exact coordinates of \(M\).
  2. By using integration by parts, show that for all \(a > 1 , \int _ { 1 } ^ { a } \frac { \ln x } { x ^ { 4 } } \mathrm {~d} x < \frac { 1 } { 9 }\).
Question 9
View details
9 The quadrilateral \(A B C D\) is a trapezium in which \(A B\) and \(D C\) are parallel. With respect to the origin \(O\), the position vectors of \(A , B\) and \(C\) are given by \(\overrightarrow { O A } = - \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } , \overrightarrow { O B } = \mathbf { i } + 3 \mathbf { j } + \mathbf { k }\) and \(\overrightarrow { O C } = 2 \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k }\).
  1. Given that \(\overrightarrow { D C } = 3 \overrightarrow { A B }\), find the position vector of \(D\).
  2. State a vector equation for the line through \(A\) and \(B\).
  3. Find the distance between the parallel sides and hence find the area of the trapezium.
Question 10
View details
10
  1. Verify that \(- 1 + \sqrt { 2 } \mathrm { i }\) is a root of the equation \(z ^ { 4 } + 3 z ^ { 2 } + 2 z + 12 = 0\).
  2. Find the other roots of this equation.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.