4.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 2}
\includegraphics[alt={},max width=\textwidth]{c68c85a1-9d80-4ced-bfb6-c7b5347e9bb8-3_424_422_1181_844}
\end{figure}
Four identical uniform rods, each of mass \(m\) and length \(2 a\), are freely jointed to form a rhombus \(A B C D\). The rhombus is suspended from \(A\) and is prevented from collapsing by an elastic string which joins \(A\) to \(C\), with \(\angle B A D = 2 \theta , 0 \leq \theta \leq \frac { 1 } { 3 } \pi\), as shown in Fig. 2. The natural length of the elastic string is \(2 a\) and its modulus of elasticity is \(4 m g\).
- Show that the potential energy, \(V\), of the system is given by
$$V = 4 m g a \left[ ( 2 \cos \theta - 1 ) ^ { 2 } - 2 \cos \theta \right] + \text { constant } .$$
- Hence find the non-zero value of \(\theta\) for which the system is in equilibrium.
- Determine whether this position of equilibrium is stable or unstable.