1.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 1}
\includegraphics[alt={},max width=\textwidth]{c68c85a1-9d80-4ced-bfb6-c7b5347e9bb8-2_450_1417_391_339}
\end{figure}
Two smooth uniform spheres \(A\) and \(B\), of equal radius, are moving on a smooth horizontal plane. Sphere \(A\) has mass 2 kg and sphere \(B\) has mass 3 kg . The spheres collide and at the instant of collision the line joining their centres is parallel to \(\mathbf { i }\). Before the collision \(A\) has velocity ( \(3 \mathbf { i } - \mathbf { j }\) ) \(\mathrm { m } \mathrm { s } ^ { - 1 }\) and after the collision it has velocity \(( - 2 \mathbf { i } - \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). Before the collision the velocity of \(B\) makes an angle \(\alpha\) with the line of centres, as shown in Fig. 1, where \(\tan \alpha = 2\). The coefficient of restitution between the spheres is \(\frac { 1 } { 2 }\).
Find, in terms of \(\mathbf { i }\) and \(\mathbf { j }\), the velocity of \(B\) before the collision.
(9)