Edexcel M3 — Question 5

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
TopicCentre of Mass 2

5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8b85b908-bb74-4532-a1b4-3826946bd43b-3_588_291_1126_662} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} A firework is modelled as a uniform solid formed by joining the plane surface of a right circular cone of height \(2 r\) and base radius \(r\), to one of the plane surfaces of a cylinder of height \(h\) and base radius \(r\) as shown in Figure 2. Using this model,
  1. show that the distance of the centre of mass of the firework from its plane base is $$\frac { 3 h ^ { 2 } + 4 h r + 2 r ^ { 2 } } { 2 ( 3 h + 2 r ) }$$ The firework is to be launched from rough ground inclined at an angle \(\alpha\) to the horizontal. Given that the firework does not slip or topple and that \(h = 4 r\),
  2. Find, correct to the nearest degree, the maximum value of \(\alpha\).