6
\includegraphics[max width=\textwidth, alt={}, center]{cc74a925-f1c8-4f59-a421-b46444cae5ec-5_387_867_258_575}
Two smooth uniform spheres \(A\) and \(B\), of equal radius, have masses 2 kg and \(m \mathrm {~kg}\) respectively. They are moving on a horizontal surface when they collide. Immediately before the collision, \(A\) has speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and is moving towards \(B\) at an angle of \(\alpha\) to the line of centres, where \(\cos \alpha = 0.6\). \(B\) has speed \(2 \mathrm {~ms} ^ { - 1 }\) and is moving towards \(A\) along the line of centres (see diagram). As a result of the collision, \(A\) 's loss of kinetic energy is \(7.56 \mathrm {~J} , B\) 's direction of motion is reversed and \(B\) 's speed after the collision is \(0.8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find
- the speed of \(A\) after the collision,
- the component of \(A\) 's velocity after the collision, parallel to the line of centres, stating with a reason whether its direction is to the left or to the right,
- the value of \(m\),
- the coefficient of restitution between \(A\) and \(B\).
\(7 S _ { A }\) and \(S _ { B }\) are light elastic strings. \(S _ { A }\) has natural length 2 m and modulus of elasticity \(120 \mathrm {~N} ; S _ { B }\) has natural length 3 m and modulus of elasticity 180 N . A particle \(P\) of mass 0.8 kg is attached to one end of each of the strings. The other ends of \(S _ { A }\) and \(S _ { B }\) are attached to fixed points \(A\) and \(B\) respectively, on a smooth horizontal table. The distance \(A B\) is \(6 \mathrm {~m} . P\) is released from rest at the point of the line segment \(A B\) which is 2.9 m from \(A\). - For the subsequent motion, show that the total elastic potential energy of the strings is the same when \(A P = 2.1 \mathrm {~m}\) and when \(A P = 2.9 \mathrm {~m}\). Deduce that neither string becomes slack.
- Find, in terms of \(x\), an expression for the acceleration of \(P\) in the direction of \(A B\) when \(A P = ( 2.5 + x ) \mathrm { m }\).
- State, giving a reason, the type of motion of \(P\) and find the time taken between successive occasions when \(P\) is instantaneously at rest.
For the instant 0.6 seconds after \(P\) is released, find
- the distance travelled by \(P\),
- the speed of \(P\).