5 One end of a light elastic string, of natural length 0.78 m and modulus of elasticity 0.8 mgN , is attached to a fixed point \(O\) on a smooth plane inclined at angle \(\alpha\) to the horizontal, where \(\sin \alpha = \frac { 5 } { 13 }\). A particle \(P\) of mass \(m \mathrm {~kg}\) is attached to the other end of the string. \(P\) is released from rest at \(O\) and moves down the plane without reaching the bottom. Find
- the maximum speed of \(P\) in the subsequent motion,
- the distance of \(P\) from \(O\) when it is at its lowest point.