5
\includegraphics[max width=\textwidth, alt={}, center]{a04e6d4e-2437-4761-87ee-43e6771fbbd9-3_549_447_253_849}
Two uniform rods \(A B\) and \(B C\), each of length 1.4 m and weight 80 N , are freely jointed to each other at \(B\), and \(A B\) is freely jointed to a fixed point at \(A\). They are held in equilibrium with \(A B\) at an angle \(\alpha\) to the horizontal, and \(B C\) at an angle of \(60 ^ { \circ }\) to the horizontal, by a light string, perpendicular to \(B C\), attached to \(C\) (see diagram).
- By taking moments about \(B\) for \(B C\), calculate the tension in the string. Hence find the horizontal and vertical components of the force acting on \(B C\) at \(B\).
- Find \(\alpha\).
\includegraphics[max width=\textwidth, alt={}, center]{a04e6d4e-2437-4761-87ee-43e6771fbbd9-3_691_665_1370_740}
A circus performer \(P\) of mass 80 kg is suspended from a fixed point \(O\) by an elastic rope of natural length 5.25 m and modulus of elasticity \(2058 \mathrm {~N} . P\) is in equilibrium at a point 5 m above a safety net. A second performer \(Q\), also of mass 80 kg , falls freely under gravity from a point above \(P\). \(P\) catches \(Q\) and together they begin to descend vertically with initial speed \(3.5 \mathrm {~ms} ^ { - 1 }\) (see diagram). The performers are modelled as particles.