3
\includegraphics[max width=\textwidth, alt={}, center]{14403602-94a6-4441-a673-65f9b98180e5-3_387_181_274_982}
\(A\) and \(B\) are fixed points with \(B\) at a distance of 1.8 m vertically below \(A\). One end of a light elastic string of natural length 0.6 m and modulus of elasticity 24 N is attached to \(A\), and one end of an identical elastic string is attached to \(B\). A particle \(P\) of weight 12 N is attached to the other ends of the strings (see diagram).
- Verify that \(P\) is in equilibrium when it is at a distance of 1.05 m vertically below \(A\).
\(P\) is released from rest at the point 1.2 m vertically below \(A\) and begins to move. - Show that, when \(P\) is \(x \mathrm {~m}\) below its equilibrium position, the tensions in \(P A\) and \(P B\) are \(( 18 + 40 x ) \mathrm { N }\) and \(( 6 - 40 x ) \mathrm { N }\) respectively.
- Show that \(P\) moves with simple harmonic motion of period 0.777 s , correct to 3 significant figures.
- Find the speed with which \(P\) passes through the equilibrium position.
\includegraphics[max width=\textwidth, alt={}, center]{14403602-94a6-4441-a673-65f9b98180e5-3_540_655_1564_744}
One end of a light inextensible string of length 0.5 m is attached to a fixed point \(O\). A particle \(P\) of mass 0.2 kg is attached to the other end of the string. With the string taut and horizontal, \(P\) is projected with a velocity of \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) vertically downward. \(P\) begins to move in a vertical circle with centre \(O\). While the string remains taut the angular displacement of \(O P\) is \(\theta\) radians from its initial position, and the speed of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) (see diagram).