2
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{14403602-94a6-4441-a673-65f9b98180e5-2_501_752_1133_356}
\captionsetup{labelformat=empty}
\caption{Fig. 1}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{14403602-94a6-4441-a673-65f9b98180e5-2_519_558_1183_1231}
\captionsetup{labelformat=empty}
\caption{Fig. 2}
\end{figure}
Two uniform rods \(A B\) and \(B C\), of weights 70 N and 110 N respectively, are freely jointed at \(B\). The rods are in equilibrium in a vertical plane with \(A\) and \(C\) at the same horizontal level and \(A C = 2 \mathrm {~m}\). The \(\operatorname { rod } A B\) is freely jointed to a fixed point at \(A\) and the rod \(B C\) is freely jointed to a fixed point at \(C\). The horizontal distance between \(B\) and \(A\) is 4 m and \(B\) is 4 m below \(A C\); angle \(B A C\) is obtuse (see Fig. 1). The force exerted on the \(\operatorname { rod } A B\) at \(B\), by the \(\operatorname { rod } B C\), has horizontal and vertical components as shown in Fig. 2.
- By taking moments about \(A\) for the \(\operatorname { rod } A B\) find the value of \(X - Y\).
- By taking moments about \(C\) for the rod \(B C\) show that \(2 X - 3 Y + 165 = 0\).
- Find the magnitude of the force acting between \(A B\) and \(B C\) at \(B\).