3
\includegraphics[max width=\textwidth, alt={}, center]{7e0f600a-18f1-458b-8549-27fca592b19c-3_419_921_267_612}
Two uniform smooth spheres \(A\) and \(B\), of equal radius, have masses 6 kg and 3 kg respectively. They are moving on a horizontal surface when they collide. Immediately before the collision the velocity of \(A\) has components \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) along the line of centres towards \(B\), and \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) perpendicular to the line of centres. \(B\) is moving with speed \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) along the line of centres towards \(A\) (see diagram). The coefficient of restitution between the spheres is \(e\).
- Find, in terms of \(e\), the component of the velocity of \(A\) along the line of centres immediately after the collision.
- Given that the speeds of \(A\) and \(B\) are the same immediately after the collision, and that \(3 e ^ { 2 } = 1\), find \(v\).