2
\includegraphics[max width=\textwidth, alt={}, center]{7e0f600a-18f1-458b-8549-27fca592b19c-2_515_1065_861_541}
Two uniform rods \(A B\) and \(B C\), each of length 2 m , are freely jointed at \(B\). The weights of the rods are \(W \mathrm {~N}\) and 50 N respectively. The end \(A\) of \(A B\) is hinged at a fixed point. The rods \(A B\) and \(B C\) make angles \(\tan ^ { - 1 } \left( \frac { 3 } { 4 } \right)\) and \(\beta\) respectively with the downward vertical, and are held in equilibrium in a vertical plane by a horizontal force of magnitude 75 N acting at \(C\) (see diagram).
- By taking moments about \(B\) for \(B C\), show that \(\tan \beta = 3\).
- Write down the horizontal and vertical components of the force acting on \(A B\) at \(B\).
- Find the value of \(W\).