5
\includegraphics[max width=\textwidth, alt={}, center]{5bb3bd29-a2eb-4124-802c-fb17b68c50e4-3_462_1109_283_569}
Two uniform rods \(A B\) and \(B C\) have weights 64 N and 40 N respectively. The rods are freely jointed to each other at \(B\). The rod \(A B\) is freely jointed to a fixed point on horizontal ground at \(A\) and the rod \(B C\) rests against a vertical wall at \(C\). The rod \(B C\) is 1.8 m long and is horizontal. A particle of weight 9 N is attached to the rod \(B C\) at the point 0.4 m from \(C\). The point \(A\) is 1.2 m below the level of \(B C\) and 3.8 m from the wall (see diagram). The system is in equilibrium.
- Show that the magnitude of the frictional force at \(C\) is 27 N .
- Calculate the horizontal and vertical components of the force exerted on \(A B\) at \(B\).
- Given that friction is limiting at \(C\), find the coefficient of friction between the \(\operatorname { rod } B C\) and the wall.