1
\includegraphics[max width=\textwidth, alt={}, center]{5bb3bd29-a2eb-4124-802c-fb17b68c50e4-2_246_693_278_731}
A particle \(P\) of mass 0.4 kg moving in a straight line has speed \(8.7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). An impulse applied to \(P\) deflects it through \(45 ^ { \circ }\) and reduces its speed to \(5.4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) (see diagram). Calculate the magnitude and direction of the impulse exerted on \(P\).
\(2 \quad O\) is a fixed point on a horizontal straight line. A particle \(P\) of mass 0.5 kg is released from rest at \(O\). At time \(t\) seconds after release the only force acting on \(P\) has magnitude \(\left( 1 + k t ^ { 2 } \right) \mathrm { N }\) and acts horizontally and away from \(O\) along the line, where \(k\) is a positive constant.
- Find the speed of \(P\) in terms of \(k\) and \(t\).
- Given that \(P\) is 2 m from \(O\) when \(t = 1\), find the value of \(k\) and the time taken by \(P\) to travel 20 m from \(O\).