AQA M3 2007 June — Question 2

Exam BoardAQA
ModuleM3 (Mechanics 3)
Year2007
SessionJune
TopicVectors 3D & Lines

2 The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are directed due east, due north and vertically upwards respectively. Two helicopters, \(A\) and \(B\), are flying with constant velocities of \(( 20 \mathbf { i } - 10 \mathbf { j } + 20 \mathbf { k } ) \mathrm { ms } ^ { - 1 }\) and \(( 30 \mathbf { i } + 10 \mathbf { j } + 10 \mathbf { k } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) respectively. At noon, the position vectors of \(A\) and \(B\) relative to a fixed origin, \(O\), are \(( 8000 \mathbf { i } + 1500 \mathbf { j } + 3000 \mathbf { k } ) \mathrm { m }\) and \(( 2000 \mathbf { i } + 500 \mathbf { j } + 1000 \mathbf { k } ) \mathrm { m }\) respectively.
  1. Write down the velocity of \(A\) relative to \(B\).
  2. Find the position vector of \(A\) relative to \(B\) at time \(t\) seconds after noon.
  3. Find the value of \(t\) when \(A\) and \(B\) are closest together.