2 The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are directed due east, due north and vertically upwards respectively.
Two helicopters, \(A\) and \(B\), are flying with constant velocities of \(( 20 \mathbf { i } - 10 \mathbf { j } + 20 \mathbf { k } ) \mathrm { ms } ^ { - 1 }\) and \(( 30 \mathbf { i } + 10 \mathbf { j } + 10 \mathbf { k } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) respectively. At noon, the position vectors of \(A\) and \(B\) relative to a fixed origin, \(O\), are \(( 8000 \mathbf { i } + 1500 \mathbf { j } + 3000 \mathbf { k } ) \mathrm { m }\) and \(( 2000 \mathbf { i } + 500 \mathbf { j } + 1000 \mathbf { k } ) \mathrm { m }\) respectively.
- Write down the velocity of \(A\) relative to \(B\).
- Find the position vector of \(A\) relative to \(B\) at time \(t\) seconds after noon.
- Find the value of \(t\) when \(A\) and \(B\) are closest together.