AQA M3 (Mechanics 3) 2007 June

Question 1
View details
1 The magnitude of the gravitational force, \(F\), between two planets of masses \(m _ { 1 }\) and \(m _ { 2 }\) with centres at a distance \(x\) apart is given by $$F = \frac { G m _ { 1 } m _ { 2 } } { x ^ { 2 } }$$ where \(G\) is a constant.
  1. By using dimensional analysis, find the dimensions of \(G\).
  2. The lifetime, \(t\), of a planet is thought to depend on its mass, \(m\), its initial radius, \(R\), the constant \(G\) and a dimensionless constant, \(k\), so that $$t = k m ^ { \alpha } R ^ { \beta } G ^ { \gamma }$$ where \(\alpha , \beta\) and \(\gamma\) are constants.
    Find the values of \(\alpha , \beta\) and \(\gamma\).
Question 2
View details
2 The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are directed due east, due north and vertically upwards respectively. Two helicopters, \(A\) and \(B\), are flying with constant velocities of \(( 20 \mathbf { i } - 10 \mathbf { j } + 20 \mathbf { k } ) \mathrm { ms } ^ { - 1 }\) and \(( 30 \mathbf { i } + 10 \mathbf { j } + 10 \mathbf { k } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) respectively. At noon, the position vectors of \(A\) and \(B\) relative to a fixed origin, \(O\), are \(( 8000 \mathbf { i } + 1500 \mathbf { j } + 3000 \mathbf { k } ) \mathrm { m }\) and \(( 2000 \mathbf { i } + 500 \mathbf { j } + 1000 \mathbf { k } ) \mathrm { m }\) respectively.
  1. Write down the velocity of \(A\) relative to \(B\).
  2. Find the position vector of \(A\) relative to \(B\) at time \(t\) seconds after noon.
  3. Find the value of \(t\) when \(A\) and \(B\) are closest together.
Question 3
View details
3 A particle \(P\), of mass 2 kg , is initially at rest at a point \(O\) on a smooth horizontal surface. The particle moves along a straight line, \(O A\), under the action of a horizontal force. When the force has been acting for \(t\) seconds, it has magnitude \(( 4 t + 5 ) \mathrm { N }\).
  1. Find the magnitude of the impulse exerted by the force on \(P\) between the times \(t = 0\) and \(t = 3\).
  2. Find the speed of \(P\) when \(t = 3\).
  3. The speed of \(P\) at \(A\) is \(37.5 \mathrm {~ms} ^ { - 1 }\). Find the time taken for the particle to reach \(A\).
Question 4
View details
4 Two small smooth spheres, \(A\) and \(B\), of equal radii have masses 0.3 kg and 0.2 kg respectively. They are moving on a smooth horizontal surface directly towards each other with speeds \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively when they collide. The coefficient of restitution between \(A\) and \(B\) is 0.8 .
  1. Find the speeds of \(A\) and \(B\) immediately after the collision.
  2. Subsequently, \(B\) collides with a fixed smooth vertical wall which is at right angles to the path of the sphere. The coefficient of restitution between \(B\) and the wall is 0.7 . Show that \(B\) will collide again with \(A\).
Question 5
View details
5 A ball is projected with speed \(u \mathrm {~ms} ^ { - 1 }\) at an angle of elevation \(\alpha\) above the horizontal so as to hit a point \(P\) on a wall. The ball travels in a vertical plane through the point of projection. During the motion, the horizontal and upward vertical displacements of the ball from the point of projection are \(x\) metres and \(y\) metres respectively.
  1. Show that, during the flight, the equation of the trajectory of the ball is given by $$y = x \tan \alpha - \frac { g x ^ { 2 } } { 2 u ^ { 2 } } \left( 1 + \tan ^ { 2 } \alpha \right)$$
  2. The ball is projected from a point 1 metre vertically below and \(R\) metres horizontally from the point \(P\).
    1. By taking \(g = 10 \mathrm {~ms} ^ { - 2 }\), show that \(R\) satisfies the equation $$5 R ^ { 2 } \tan ^ { 2 } \alpha - u ^ { 2 } R \tan \alpha + 5 R ^ { 2 } + u ^ { 2 } = 0$$
    2. Hence, given that \(u\) and \(R\) are constants, show that, for \(\tan \alpha\) to have real values, \(R\) must satisfy the inequality $$R ^ { 2 } \leqslant \frac { u ^ { 2 } \left( u ^ { 2 } - 20 \right) } { 100 }$$
    3. Given that \(R = 5\), determine the minimum possible speed of projection.
Question 6
View details
6 A smooth spherical ball, \(A\), is moving with speed \(u\) in a straight line on a smooth horizontal table when it hits an identical ball, \(B\), which is at rest on the table. Just before the collision, the direction of motion of \(A\) makes an angle of \(30 ^ { \circ }\) with the line of the centres of the two balls, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{daea0765-041a-4569-a535-f90fe4708313-4_362_1632_621_242} The coefficient of restitution between \(A\) and \(B\) is \(e\).
  1. Given that \(\cos 30 ^ { \circ } = \frac { \sqrt { 3 } } { 2 }\), show that the speed of \(B\) immediately after the collision is $$\frac { \sqrt { 3 } } { 4 } u ( 1 + e )$$
  2. Find, in terms of \(u\) and \(e\), the components of the velocity of \(A\), parallel and perpendicular to the line of centres, immediately after the collision.
  3. Given that \(e = \frac { 2 } { 3 }\), find the angle that the velocity of \(A\) makes with the line of centres immediately after the collision. Give your answer to the nearest degree.
    (3 marks)
Question 7
View details
7 A particle is projected from a point on a plane which is inclined at an angle \(\alpha\) to the horizontal. The particle is projected up the plane with velocity \(u\) at an angle \(\theta\) above the plane. The motion of the particle is in a vertical plane containing a line of greatest slope of the inclined plane.
\includegraphics[max width=\textwidth, alt={}, center]{daea0765-041a-4569-a535-f90fe4708313-5_401_748_516_644}
  1. Using the identity \(\cos ( A + B ) = \cos A \cos B - \sin A \sin B\), show that the range up the plane is $$\frac { 2 u ^ { 2 } \sin \theta \cos ( \theta + \alpha ) } { g \cos ^ { 2 } \alpha }$$
  2. Hence, using the identity \(2 \sin A \cos B = \sin ( A + B ) + \sin ( A - B )\), show that, as \(\theta\) varies, the range up the plane is a maximum when \(\theta = \frac { \pi } { 4 } - \frac { \alpha } { 2 }\).
  3. Given that the particle strikes the plane at right angles, show that $$2 \tan \theta = \cot \alpha$$