Edexcel M2 (Mechanics 2)

Question 1
View details
  1. Two identical particles are approaching each other along a straight horizontal track. Just before they collide, they are moving with speeds \(5 \mathrm {~ms} ^ { - 1 }\) and \(3 \mathrm {~ms} ^ { - 1 }\) respectively. The coefficient of restitution between the particles is \(\frac { 1 } { 2 }\).
Find the speeds of the particles immediately after the impact.
Question 2
View details
2. A particle \(P\) of mass 3 kg moves such that at time \(t\) seconds its position vector, \(\mathbf { r }\) metres, relative to a fixed origin, \(O\), is given by $$\mathbf { r } = \left( t ^ { 2 } - 3 t \right) \mathbf { i } + \frac { 1 } { 6 } t ^ { 3 } \mathbf { j }$$ where \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular horizontal unit vectors.
  1. Find the velocity of \(P\) when \(t = 0\).
  2. Find the kinetic energy lost by \(P\) in the interval \(0 \leq t \leq 2\).
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0e751be-f095-4a56-8ee9-8433cc4873e9-2_424_360_1155_648} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Figure 1 shows a uniform ladder of mass 15 kg and length 8 m which rests against a smooth vertical wall at \(A\) with its lower end on rough horizontal ground at \(B\). The coefficient of friction between the ladder and the ground is \(\frac { 1 } { 3 }\) and the ladder is inclined at an angle \(\theta\) to the horizontal, where \(\tan \theta = 2\). A man of mass 75 kg ascends the ladder until he reaches a point \(P\). The ladder is then on the point of slipping.
  1. Write down suitable models for
    1. the ladder,
    2. the man.
  2. Find the distance \(A P\).
Question 4
View details
4. A particle \(P\) moves in a straight horizontal line such that its acceleration at time \(t\) seconds is proportional to \(\left( 3 t ^ { 2 } - 5 \right)\). Given that at time \(t = 0 , P\) is at rest at the origin \(O\) and that at time \(t = 3\), its velocity is \(3 \mathrm {~ms} ^ { - 1 }\),
  1. find, in \(\mathrm { m } \mathrm { s } ^ { - 2 }\), the acceleration of \(P\) in terms of \(t\),
  2. show that the displacement of the particle, \(s\) metres, from \(O\) at time \(t\) is given by $$s = \frac { 1 } { 16 } t ^ { 2 } \left( t ^ { 2 } - 10 \right)$$ (4 marks)
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0e751be-f095-4a56-8ee9-8433cc4873e9-3_591_609_785_623} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Figure 2 shows a uniform plane lamina \(A B C D E G\) in the shape of a letter ' \(L\) ' consisting of a rectangle \(A B F G\) joined to another rectangle \(C D E F\). The sides \(A B\) and \(D E\) are both 8 cm long and the sides \(E G\) and \(G A\) are of length 24 cm and 32 cm respectively.
  1. Show that the centre of mass of the lamina lies on the line \(B F\).
  2. Find the distance of the centre of mass from the line \(A B\). The uniform lamina in Figure 2 is a model of the letter ' \(L\) ' in a sign above a shop. The letter is normally suspended from a wall at \(A\) and \(B\) so that \(A B\) is horizontal but the fixing at \(B\) has broken and the letter hangs in equilibrium from the point \(A\).
  3. Find, in degrees to one decimal place, the acute angle \(A G\) makes with the vertical.
Question 6
View details
6. The engine of a car of mass 1200 kg is working at a constant rate of 90 kW as the car moves along a straight horizontal road. The resistive forces opposing the motion of the car are constant and of magnitude 1800 N .
  1. Find the acceleration of the car when it is travelling at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find, in kJ, the kinetic energy of the car when it is travelling at maximum speed. The car ascends a hill which is straight and makes an angle \(\alpha\) with the horizontal. The power output of the engine and the non-gravitational forces opposing the motion remain the same. Given that the car can attain a maximum speed of \(25 \mathrm {~ms} ^ { - 1 }\),
  3. find, in degrees correct to one decimal place, the value of \(\alpha\).
    (5 marks)
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0e751be-f095-4a56-8ee9-8433cc4873e9-4_236_942_1101_479} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Figure 3 shows the path of a golf ball which is hit from the point \(O\) with speed \(49 \mathrm {~ms} ^ { - 1 }\) at an angle of \(30 ^ { \circ }\) to the horizontal. The path of the ball is in a vertical plane containing \(O\) and the hole at which the ball is aimed. The hole is 170 m from \(O\) and on the same horizontal level as \(O\).
  1. Suggest a suitable model for the motion of the golf ball. Find, correct to 3 significant figures,
  2. the distance beyond the hole at which the ball hits the ground,
  3. the magnitude and direction of the velocity of the ball when it is directly above the hole.