A parachutist and her equipment have a combined mass of 80 kg . During a descent where the parachutist loses 1600 m in height, her speed reduces from \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and she does \(1.3 \times 10 ^ { 6 } \mathrm {~J}\) of work against resistances.
Use an energy method to calculate the value of \(V\).
A vehicle of mass 800 kg is climbing a hill inclined at \(\theta\) to the horizontal, where \(\sin \theta = 0.1\). At one time the vehicle has a speed of \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and is accelerating up the hill at \(0.25 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) against a resistance of 1150 N .
Show that the driving force on the vehicle is 2134 N and calculate its power at this time.
The vehicle is pulling a sledge, of mass 300 kg , which is sliding up the hill. The sledge is attached to the vehicle by a light, rigid coupling parallel to the slope. The force in the coupling is 900 N .
Assuming that the only resistance to the motion of the sledge is due to friction, calculate the coefficient of friction between the sledge and the ground.